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Chapitre 12 : Flambage des poutres droites

Introduction

Objectif : Prédire si une poutre va se casser par rupture de matériau ou par flambage
Une poutre se casse soit car :
- On aun dépassement de la contrainte maximum de rupture du matériau

- On a dépassement de la contrainte de flambage

240MPa

stress Ocrit (L. /r)z
P/A

Euler's
Buckling
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Chapitre 12 : Flambage des poutres droites
Stabilité et instabilité élastiques

Grandes déeformations dans un systeme stable (a) ou instable (b)

@) 5y

(b)

S’agit-il d’'un systeme stable ou instable?

Certains systemes sont élastiguement instables. A partir d’'un certain niveau des
forces extérieures et sans pour autant que les contraintes n’aient encore atteint la
limite élastique, ils subissent de grandes déformations entrainant une augmentation
des efforts intérieurs et généralement la ruine du systeme



Chapitre 12 : Flambage des poutres droites

Formule d’Euler
Considérons une poutre soumise a une charge de compression excentrée N.

Hypotheses :

- Poutre élancée: ¢ est grande relativement aux dimensions linéaire de la section
- Moment d'inertie 7, est inferieur ou egale a I, (exemple : poutre rectangulaire)
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Chapitre 12 : Flambage des poutres droites
Formule d’Euler

Le cas de charge considére est donc un cas particulier de la flexion composée
examinée au chapitre 8, mais, la poutre étant élancée, il n'est plus possible de
négliger la déformation dans I'expression du moment de flexion.

Le moment dans une section de hauteur x s’exprime au moyen de 6 la fleche au
sommet de la poutre, e I'excentricité et N la charge

« M=-N(+e—y) ®

YA

La deformée due au moment de flexion s’exprime alors

y”=%=%(6+e—y}=k2(5+e—y)

. N
Avec la notation k? = =
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Formule d’Euler
L'équation difféerentielle de la déformée

- V' +k?*y =k*(5 +e)

Admet la solution suivante

e y=C;sinkx + C,coskx + (6§ + e)

Les conditions aux limites permettent d'exprimer les
constantes C, et C,

- y(x=0)=0=(
vy (x=0)=0=C+(6+e)

La solution devient alors
« y=(+e)(1—-coskx)




Chapitre 12 : Flambage des poutres droites
Formule d’Euler

En exprimant la fleche a I'extrémité de la poutre

« §=y(x=0)=(5+e)(1l—coskl)=

e
cos k/

(1 — cos k/)

On peut alors exprimer le deplacement y

e

Y= cos k/

(1 — cos kx)

A la lecture de cette relation, on remarquera que la fleche 6 n'est plus une fonction
linéaire de la charge N et qu’elle tend méme vers I'infini quand le dénominateur du
membre droit de I'égalité s’annule, ¢c’est-a-dire pour

« coskl/=0 ou k=%(1+2n)

A ces valeurs particulieres du facteur k correspondent les charge critiques N, du
systeme

10



Chapitre 12 : Flambage des poutres droites

On peut alors exprimer les charges critiques en
. / . N
intégrant ce facteur k dans la relation k? = =

T2 EI
402

- N, =k2EI = (1 + 2n)?

L’équation de la déformée y = Co:kf (1 — cos kx) est

une sinusoide dont la demi-longueur d'onde /¢, est,
donnée par I'égalité

T 2
[ ] fO=—=
k 1+2n

On en tire la formule d’Euler :
T2 EI
%

La charge critique ne dépend pas de I'excentricité e
contrairement au moment de flexion calculé

N, =

Formule d’Euler

l Ny

11
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Chapitre 12 : Flambage des poutres droites

Amplitude de la déformation

Considérons maintenant la déformation latérale d’'une poutre soumise a deux
charges opposées.

Si cette deformation latérale est representée par la variable y, le moment de flexion M
a distance x de 'une des extrémites a pour expression

- M(y)=yN

La deformée due au moment de flexion s’exprime alors

. o __M_ N2
Y =TT TEYT ky

14



Chapitre 12 : Flambage des poutres droites
Amplitude de la déformation

L’équation différentielle

- y'+k?*y =0

En intégrant deux fois I'équation et en exprimant les conditions de bords

« y=C;sinkx + C, coskx
- y(x=0)=0=0,
« y(x=1/¢)=0=C;sink/

La seconde conditions de bords admet 'une des solutions suivantes
° C1 = O
- ki =nm n=123 ..)

ou n est un entier strictement positif. Si la constante C, s'annule, la déformation est
nulle partout et la poutre garde sa position initiale. 15



T2 EI

© N =k2El ="n

Chapitre 12 : Flambage des poutres droites

Amplitude de la déformation
Sile produit k ¢ est égal a n 7, la charge est critique et satisfait la relation

Lo ()

2

n?El _ m?EIl

B (f/n)2 L3

car k? =

La figure illustre trois allures theéoriques de la déformée :

- n = 1, la demi-longueur d'onde vaut ¢, = ¢ et la charge critique N, adopte la

valeur fondamentale N,, = n2EI/ (?;

- n = 2;lademi-longueur d’onde est égale a ¢, = ¢/2, tandis que la charge critique
- n = 3; la demi-longueur d’onde s’éleve a ¢, = ¢/3 et la charge critique prend la

valeur N; = 9 N_;.

charge critique
fondamentale

A

\/

_n?El
n=1 T T 5

EZ
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Cas dérivés du flambage d’une poutre

On peut déduire la charge critique d’une poutre articulée aux extrémités de celle

d’une poutre encastrée et réciproquement. Il suffit de chercher la valeur correcte de
la demi-longueur d'onde ¢, pour trouver la charge critique d'autres cas de charge qui

peuvent se deduire des deux cas fondamentaux

/

0,=0,7¢
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Chapitre 12 : Flambage des poutres droites
Flambage en dehors du domaine élastique

Le phénomene d'instabilité élastique correspond a la rupture d’équilibre d’un
systeme. Il ne dépend que du module d’élasticité du matériau et des dimensions
géométriques, alors que la valeur des contraintes ne joue aucun role.

Cette affirmation n’est toutefois vraie qu’en-dessous de la limite élastique du
matériau ou, plus exactement, de la limite de proportionnalité. Or, il se peut que les
contraintes de compression aient deja dépasse cette limite au moment de
'instabilité.

Dans ce cas, la charge critique ne peut plus étre calculée par la formule d’Euler ou
les formules dérivées.

N
° O-C = F
En introduisant N, ainsi que le rayon de giration i = ,/I/Fde la section, on définit la
contrainte critique comme étant

N, mw?El  m?Ei? m’E m%E

Oc=F T Br T2 T (lo/i) PR

1 Ml

c = T 2
05
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Flambage en dehors du domaine élastique
La borne de validite de la formule d’'Euler est fournit par I'élancement limite 4,

« A =4y/i =1JE /oy,

Si la contrainte critique o, déepasse la limite de proportionnalité ¢, la formule d’Euler
n'est plus valable.

N, m?El m?Ei? m’E m2E

o = = 6(2) = (go/i)z = 12

o, =—— = =
¢ F  (l3F

Proposée par Tetmayer, une methode tres
simple pour étendre la notion de flambage au

domaine plastigue consiste a interpoler p |
.. — \ droite Tetmayer
lintairement o, entre la limite de o3 N
proportionnalité o, et la résistance a la N
COMPression oy, % / courbe Euler
2
° UC=O-BC_E(O-BC_O-p) !
A

19



Chapitre 12 : Flambage des poutres droites
Flambage en dehors du domaine élastique

En considérant la contrainte limite de compression égale a celle de traction on peut
exprimer I'élancement limite pour quelgues matériaux comme étant

T R T

S235 (Ac37-2) 210 190 104
E 295 K (Ac50-2K) 210 360 720 76
EN AW-AIl (Cu7Mg1 T6) 70 320 630 47

La formule de Tetmayer nous fournit alors I'expression de la contrainte critique pour
ces mémes matériaux

A%
o \ droite Tetmayer
. be Eul
5235 (Ac37-2) 400 - 22 & / SoHbE B
F 295 K (Ac50-2K) 720 - 4.7 1
EN AW-AI (Cu7Mg1 T6) 630 - 6.6 )

20



Chapitre 12 : Flambage des poutres droites
Probleme 12.1

Calculer I'écart de température A6 qui provoque le flambage d’un tube de longueur ¢

en acier S 235, articulé a ses extremites 4 et B. Déterminer les charge et contrainte
critiques correspondantes et évaluer ces mémes valeurs pour un tube encastré a ses
extrémites.

Données numeériques

¢ = 25m
d, = 5cm

= 4cm a = 12106/ °C
= 210 GPa

oy S

21
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Chapitre 12 : Flambage des poutres droites
Probleme 12.1

Calculer I'écart de température At qui provoque le flambage d’un tube de longueur ¢

en acier S 235, articulé a ses extremites 4 et B. Déterminer les charge et contrainte
critiques correspondantes et évaluer ces mémes valeurs pour un tube encastré a ses
extrémites.

Données numeériques

¢ = 25m
d, = 5cm

= 4cm a = 12:10-6/°C
2.1-1011 Pa

oy S

24
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Probleme 12.1
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Probleme 12.1
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Probleme 12.1
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Probleme 12.1
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Stabilité et instabilité élastiques

Pour un petit déplacement horizontal 6 du point B , le ressort fournit une force de
rappel R = k o et la barre tourne d’'un petit angle .

p k
A
B

C Y

2

Equilibre du moment de force au point C
© Mc=hR—-—6N=6(kh —N)

31



Chapitre 12 : Flambage des poutres droites

Stabilité et instabilité élastiques

La stabilité du systeme est caracterisée par I'équilibre des moments de forces R et N
au point C

- M;=hR-8N=358(kh —N)

Trois possibilités se presentent alors :

- N<kh (M, > 0);le moment de rappel du au ressort 'emporte sur le moment de
la force extérieure et le systeme revient a sa position initiale;

- N>kh (M, < 0); le moment de la force extéerieure I'emporte sur le moment de
rappel et le systeme s’effondre;

- N=kh (M, = 0); les deux moments s’equilibrent et le systeme est instable, mais
pratiquement il s’effondre quand méme car la plus petite imperfection
geomeétrique suffit pour le faire quitter sa position initiale (la force N = k h est la
charge critique du systeme).

32



Chapitre 12 : Flambage des poutres droites
Travail et énergie de déformation

Un systeme est stable si sa déformation a pour
consequence de diminuer le moment de flexion
interne (exemple de la poutre encastrée)

Un systeme devient instable lorsque les forces
extérieures induisent des déformations qui entrainent DI

une augmentation des efforts intérieurs et 7 ‘ >|N
généralement la ruine du systeme

Si I'on reprend I'exemple du début du chapitre on
peut définir son énergie de déformation et le travail de
la force extérieure comme suit :

. _1lpe 1,62 1 V2 — 102 02
U—2R6—2k6 —zk(hsmgo) —Zkhrp

« V=tN=h(1l-cosp)N = %hgozN

33



Chapitre 12 : Flambage des poutres droites
Travail et énergie de déformation

La stabilité du systeme dépend alors si
- U >V le systeme est stable
- U <V le systeme s’effondre

- U =V le systeme est instable

Cette troisieme condition permet de retrouver la
charge critique déja énoncée
e 1po2n =1pp2,2
2h(,o N, = 2kh ©
- N.=kh

| 'expression découlant de I'équilibre du travail de
force externe et de I'énergie de déformation et donc
équivalente a I'expression obtenue en cherchant
I'expression du moment de flexion dans la poutre

34



Chapitre 12 : Flambage des poutres droites
Méthode de Timoshenko

Le systeme est alors instable si le travail V' = ¢ N de la force extérieure est egal a
I'’énergie de déformation U, la charge critique correspondante ayant pour valeur

La méthode présente I'avantage principal d’éviter I'intégration de I'’équation différen-
tielle du systeme

Par contre, la deformee choisie étant arbitraire, la charge critique trouvée n’est
qu’approximative.

Elle est toujours supérieure a la valeur exacte car la déformée réelle prend
spontanément la forme qui rend minimum la charge critique du systeme

35



Méthode de Timoshenko

Reprenons le cas fondamental d’'une poutre encastrée soumise a une charge de
compression N

(b)
B
= -—
| B
|
d.Sl
| ds dx
|
|
A =

36



Chapitre 12 : Flambage des poutres droites
Méthode de Timoshenko

Deux points 4 et B de la poutre, distants de ds, se déplacent en 4’ et B’ apres de-
formation. Si I'on néglige le raccourcissement dU a la compression, I'arc A'B' garde
la longueur ds et la contribution de cet élément au déplacement vertical de la charge

a pour valeur 3
1 1 B
« dt=ds—dx=(dx*+dy?)? —dx =dx [(1+y’2)2—1] ds! ]
| 3 dx
-
A" dy

La dérivée y’ de la déformée y(x) est tres petite en comparaison de 'unité car le
déplacement horizontal 6 est beaucoup plus faible que la longueur ¢ quand la

charge devient critique

En ne conservant que les deux premiers termes du développement de la racine, on
peut récrire I'équation sous la forme suivante

. dt=dx|(1+ y’z)% _1] = (1+2y7) - 1| =2y2%dx

A

1
— (1+a)1/251+za+---

37
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Méthode de Timoshenko

L'intégration de I'equation
1l s
cot=- )y dx

Si I'on néeglige I'influence de la compression et de 'effort tranchant, I'énergie de dé-
formation de la poutre est donnée par I'expression simplifiée

En remplagant le moment de flexion M par sa valeur tiree de la liaison entre la déri-
vee seconde de la déformée y et le moment flechissant M, on trouve
1 o4 M?

_1tM" __EI Co2
U—ZOEldx—zfoy dx

L M = —y"El

On obtient finalement la formule de Timoshenko

14
o N, =U=prh Yyt
t

Jy yr? dx

38



Application de la méthode de Timoshenko au cas fondamental
Choisissons d’abord comme déformée y(x) la courbe exacte (sans excentrement e)
trouvée par intégration de I'’équation différentielle

r N
c Y == (6 —y) = —k%y aveck=%

On cherche la solution

« y=1C(;sinkx + C, coskx + C;
« y' =k C;sinkx — kC, coskx

y'(x=0)=0=kC1 C1=O
. y(x=0)=O=Cz+C39 CZ=_6
y(x=€)=5=C1+C3 C3=6

D’ou finalement on trouve

. y=6(1—cos%x)

39



Chapitre 12 : Flambage des poutres droites
Application de la méthode de Timoshenko au cas fondamental

| es deux dérivées successives s’écrivent
T
] , d[c‘)‘(l—coswx)] s i T
y = dx B 2/ 2/

T o) cos ™
T al? 2/

Le deplacement ¢ est donné par la formule

1l s _ m?8% . ,mx 282
cot=- )y dx = ) dx

Et donc I'énergie fournie au systeme est €gale a

[ U=

ElTt* 62 ff cos? X dx = ElIT*6%
3204 Jo 20 T 6403

On trouve la charge critique en divisant I'énergie par le déplacement ¢

U T2EI
[ NC _ — = >
t 4y

40
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Application de la méthode de Timoshenko au cas fondamental

Supposons maintenant que la déforme y(x) soit inconnue et prenons comme
déformée celle que produit une force horizontale O appliquée a I'extrémité supérieure
de la poutre. Annexe [V

C Y= (3£x x3)

- y' = 2El(Zﬁx—x )

Q
c Y == =x)
En procedent comme précédemment on trouve

, 265
¢ f yz 8E212 (fo _xz) dx = 15E2]2

Q2£3
6EI

) ZEIf (£ = x)%dx =

La charge critique approchée est donnée par

!

U 5EI . N-~—N 5/2—1% /4
est erreur relative g = Ne=Nc _ 5/2—m/4

= +1.3%

. NC

41



Chapitre 12 : Flambage des poutres droites
Probleme 12.3

Le systeme représenté est constitué d’'une poutre articulée a ses extrémites et de
deux ressorts de constante k. Calculer la charge critique du systeme en prenant
comme déformée celle qui se produit quand les ressorts n’existent pas, c’est a dire
une sinusoide a une demi onde (courbe 1). Trouver ensuite la valeur de la constante
k pour laquelle la poutre flambe selon une sinusoide a trois demi ondes (courbe 2).

A
Y
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Chapitre 12 : Flambage des poutres droites
Probleme 12.3

Le systeme représenté est constitué d’'une poutre articulée a ses extrémites et de
deux ressorts de constante k. Calculer la charge critique du systeme en prenant
comme déformée celle qui se produit quand les ressorts n’existent pas, c’est a dire
une sinusoide a une demi onde (courbe 1). Trouver ensuite la valeur de la constante
k pour laquelle la poutre flambe selon une sinusoide a trois demi ondes (courbe 2).

A
Y
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Probleme 12.3
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Probleme 12.3
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Probleme 12.3
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Probleme 12.3
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Chapitre 12 : Flambage des poutres droites

Exemple

Déterminer la charge critique de flambage pour la canette en alliage d’aluminium
schématisee ci-dessous (négligeons le rétrécissement et supposons les extremités
comme indéformables). Déterminer la charge limite en compression. Comparer ces
valeurs et discuter de I'expérience d’écrasement d’une canette sous le poids d’'une
personne physique.

f&» Applications :
Module de l'alliage Al E =73 GPa
H Limite de proportionnalité ¢, = 320 MPa
Hauteur H=115cm
Diametre D =7cm
Epaisseur parois : e = 0.075 mm
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