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Objectif : Prédire si une poutre va se casser par rupture de matériau ou par flambage

Une poutre se casse soit car :

• On a un dépassement de la contrainte maximum de rupture du matériau

• On a dépassement de la contrainte de flambage

Introduction

Élancement ⁄λ=0 𝑖𝑖
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Application
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Grandes déformations dans un système stable (a) ou instable (b)

S’agit-il d’un système stable ou instable?

Certains systèmes sont élastiquement instables. A partir d’un certain niveau des
forces extérieures et sans pour autant que les contraintes n’aient encore atteint la
limite élastique, ils subissent de grandes déformations entraînant une augmentation
des efforts intérieurs et généralement la ruine du système

Stabilité  et  instabilité  élastiques
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Considérons une poutre soumise à une charge de compression excentrée N.

Hypothèses :

• Poutre élancée:  est grande relativement aux dimensions linéaire de la section

• Moment d’inertie Iz est inférieur ou égale à Iy (exemple : poutre rectangulaire)

Formule d’Euler
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Le cas de charge considéré est donc un cas particulier de la flexion composée
examinée au chapitre 8, mais, la poutre étant élancée, il n’est plus possible de
négliger la déformation dans l’expression du moment de flexion.

Le moment dans une section de hauteur x s’exprime au moyen de δ la flèche au
sommet de la poutre, e l’excentricité et N la charge

• 𝑀𝑀 = −𝑁𝑁 𝛿𝛿 + 𝑒𝑒 − 𝑦𝑦

La déformée due au moment de flexion s’exprime alors

• 𝑦𝑦′′ = 𝑀𝑀 𝑦𝑦
𝐸𝐸𝐸𝐸

= 𝑁𝑁
𝐸𝐸𝐸𝐸

𝛿𝛿 + 𝑒𝑒 − 𝑦𝑦 = 𝑘𝑘2 𝛿𝛿 + 𝑒𝑒 − 𝑦𝑦

Avec la notation 𝑘𝑘2 = 𝑁𝑁
𝐸𝐸𝐸𝐸

Formule d’Euler
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L’équation différentielle de la déformée

• 𝑦𝑦′′ + 𝑘𝑘2𝑦𝑦 = 𝑘𝑘2 𝛿𝛿 + 𝑒𝑒

Admet la solution suivante

• 𝑦𝑦 = 𝐶𝐶1 sin𝑘𝑘𝑘𝑘 + 𝐶𝐶2 cos 𝑘𝑘𝑘𝑘 + 𝛿𝛿 + 𝑒𝑒

Les conditions aux limites permettent d’exprimer les
constantes C1 et C2

• 𝑦𝑦′ 𝑥𝑥 = 0 = 0 = 𝐶𝐶1

• 𝑦𝑦 𝑥𝑥 = 0 = 0 = 𝐶𝐶2 + 𝛿𝛿 + 𝑒𝑒

La solution devient alors

• 𝑦𝑦 = 𝛿𝛿 + 𝑒𝑒 1 − cos𝑘𝑘𝑘𝑘

Formule d’Euler
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En exprimant la flèche à l’extrémité de la poutre

• 𝛿𝛿 = 𝑦𝑦 𝑥𝑥 =  = 𝛿𝛿 + 𝑒𝑒 1 − cos𝑘𝑘 = 𝑒𝑒
cos 𝑘𝑘

1 − cos𝑘𝑘

On peut alors exprimer le déplacement y

• 𝑦𝑦 = 𝑒𝑒
cos 𝑘𝑘

1 − cos𝑘𝑘𝑘𝑘

A la lecture de cette relation, on remarquera que la flèche δ n’est plus une fonction
linéaire de la charge N et qu’elle tend même vers l’infini quand le dénominateur du
membre droit de l’égalité s’annule, c’est-à-dire pour

• cos𝑘𝑘 = 0 ou 𝑘𝑘 = 𝜋𝜋
2

1 + 2𝑛𝑛

A ces valeurs particulières du facteur k correspondent les charge critiques Nc du
système

Formule d’Euler
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On peut alors exprimer les charges critiques en
intégrant ce facteur k dans la relation 𝑘𝑘2 = 𝑁𝑁

𝐸𝐸𝐸𝐸

• 𝑁𝑁𝑐𝑐 = 𝑘𝑘2𝐸𝐸𝐸𝐸 = 𝜋𝜋2 𝐸𝐸𝐸𝐸
42

1 + 2𝑛𝑛 2

L’équation de la déformée 𝑦𝑦 = 𝑒𝑒
cos 𝑘𝑘

1 − cos𝑘𝑘𝑘𝑘 est
une sinusoïde dont la demi-longueur d’onde 0 est,
donnée par l’égalité

• 0 = 𝜋𝜋
𝑘𝑘

= 2
1+2𝑛𝑛



On en tire la formule d’Euler :

• 𝑁𝑁𝑐𝑐 = 𝜋𝜋2 𝐸𝐸𝐸𝐸
0
2

La charge critique ne dépend pas de l’excentricité e
contrairement au moment de flexion calculé

Formule d’Euler
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Considérons maintenant la déformation latérale d’une poutre soumise à deux
charges opposées.

Si cette déformation latérale est représentée par la variable y, le moment de flexion M
à distance x de l’une des extrémités a pour expression

• 𝑀𝑀 𝑦𝑦 = 𝑦𝑦 𝑁𝑁

La déformée due au moment de flexion s’exprime alors

• 𝑦𝑦′′ = − 𝑀𝑀
𝐸𝐸𝐸𝐸

= − 𝑁𝑁
𝐸𝐸𝐸𝐸
𝑦𝑦 = −𝑘𝑘2𝑦𝑦

Amplitude de la déformation
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L’équation différentielle

• 𝑦𝑦′′ + 𝑘𝑘2𝑦𝑦 = 0

En intégrant deux fois l’équation et en exprimant les conditions de bords

• 𝑦𝑦 = 𝐶𝐶1 sin𝑘𝑘𝑘𝑘 + 𝐶𝐶2 cos 𝑘𝑘𝑘𝑘
• 𝑦𝑦 𝑥𝑥 = 0 = 0 = 𝐶𝐶2
• 𝑦𝑦 𝑥𝑥 =  = 0 = 𝐶𝐶1 sin𝑘𝑘

La seconde conditions de bords admet l’une des solutions suivantes

• 𝐶𝐶1 = 0

• 𝑘𝑘 = 𝑛𝑛𝜋𝜋 (n = 1, 2, 3, …)

où n est un entier strictement positif. Si la constante C1 s’annule, la déformation est
nulle partout et la poutre garde sa position initiale.

Amplitude de la déformation
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Si le produit k  est égal à n π, la charge est critique et satisfait la relation

• 𝑁𝑁𝑐𝑐 = 𝑘𝑘2𝐸𝐸𝐸𝐸 = 𝜋𝜋2 𝐸𝐸𝐸𝐸


2 𝑛𝑛2 = 𝜋𝜋2 𝐸𝐸𝐸𝐸

⁄
 𝑛𝑛

2 = 𝜋𝜋2 𝐸𝐸𝐸𝐸
𝑜𝑜
2 car 𝑘𝑘2 = 𝑁𝑁

𝐸𝐸𝐸𝐸
= 𝑛𝑛𝜋𝜋



2

La figure illustre trois allures théoriques de la déformée :
• n = 1; la demi-longueur d’onde vaut 0 =  et la charge critique Nc adopte la

valeur fondamentale Nc1 = π2EI / 2;
• n = 2; la demi-longueur d’onde est égale à 0 = /2, tandis que la charge critique
• n = 3; la demi-longueur d’onde s’élève à 0 = /3 et la charge critique prend la

valeur Nc3 = 9 Nc1.

Amplitude de la déformation
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Cas dérivés du flambage d’une poutre

On peut déduire la charge critique d’une poutre articulée aux extrémités de celle
d’une poutre encastrée et réciproquement. Il suffit de chercher la valeur correcte de
la demi-longueur d’onde 0 pour trouver la charge critique d’autres cas de charge qui
peuvent se déduire des deux cas fondamentaux
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Le phénomène d’instabilité élastique correspond à la rupture d’équilibre d’un
système. Il ne dépend que du module d’élasticité du matériau et des dimensions
géométriques, alors que la valeur des contraintes ne joue aucun rôle.

Cette affirmation n’est toutefois vraie qu’en-dessous de la limite élastique du
matériau ou, plus exactement, de la limite de proportionnalité. Or, il se peut que les
contraintes de compression aient déjà dépassé cette limite au moment de
l’instabilité.

Dans ce cas, la charge critique ne peut plus être calculée par la formule d’Euler ou
les formules dérivées.

• 𝜎𝜎𝑐𝑐 = 𝑁𝑁𝑐𝑐
𝐹𝐹

En introduisant Nc ainsi que le rayon de giration 𝑖𝑖 = ⁄𝐼𝐼 𝐹𝐹de la section, on définit la
contrainte critique comme étant

• 𝜎𝜎𝑐𝑐 = 𝑁𝑁𝑐𝑐
𝐹𝐹

= 𝜋𝜋2𝐸𝐸𝐸𝐸
0
2𝐹𝐹

= 𝜋𝜋2𝐸𝐸𝑖𝑖2

0
2 = 𝜋𝜋2𝐸𝐸

⁄
0 𝑖𝑖

2 = 𝜋𝜋2𝐸𝐸
𝜆𝜆2

Flambage en dehors du domaine élastique

𝑁𝑁𝑐𝑐 =
𝜋𝜋2 𝐸𝐸𝐸𝐸
𝑜𝑜
2
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La borne de validité de la formule d’Euler est fournit par l’élancement limite λp

• 𝜆𝜆𝑝𝑝 = ⁄
0 𝑖𝑖 = 𝜋𝜋 ⁄𝐸𝐸 𝜎𝜎𝑝𝑝

Si la contrainte critique σc dépasse la limite de proportionnalité σp, la formule d’Euler
n’est plus valable.

• 𝜎𝜎𝑐𝑐 = 𝑁𝑁𝑐𝑐
𝐹𝐹

= 𝜋𝜋2𝐸𝐸𝐸𝐸
0
2𝐹𝐹

= 𝜋𝜋2𝐸𝐸𝑖𝑖2

0
2 = 𝜋𝜋2𝐸𝐸

⁄
0 𝑖𝑖

2 = 𝜋𝜋2𝐸𝐸
𝜆𝜆2

Flambage en dehors du domaine élastique

courbe Euler

droite Tetmayer

Proposée par Tetmayer, une méthode très
simple pour étendre la notion de flambage au
domaine plastique consiste à interpoler
linéairement σc entre la limite de
proportionnalité σp et la résistance à la
compression σBC

• 𝜎𝜎𝑐𝑐 = 𝜎𝜎𝐵𝐵𝐵𝐵 −
𝜆𝜆
𝜆𝜆𝑝𝑝

𝜎𝜎𝐵𝐵𝐵𝐵 − 𝜎𝜎𝑝𝑝
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En considérant la contrainte limite de compression égale à celle de traction on peut
exprimer l’élancement limite pour quelques matériaux comme étant

La formule de Tetmayer nous fournit alors l’expression de la contrainte critique pour
ces mêmes matériaux

Flambage en dehors du domaine élastique

courbe Euler

droite Tetmayer

Matériau E [GPa] σp [MPa] σB [MPa] λp

S235 (Ac37-2) 210 190 400 104

E 295 K (Ac50-2K) 210 360 720 76

EN AW-Al (Cu7Mg1 T6) 70 320 630 47

Matériau σc [MPa]

S235 (Ac37-2) 400 – 2λ

E 295 K (Ac50-2K) 720 – 4.7λ

EN AW-Al (Cu7Mg1 T6) 630 – 6.6λ
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Calculer l’écart de température ∆θ qui provoque le flambage d’un tube de longueur 
en acier S 235, articulé à ses extrémités A et B. Déterminer les charge et contrainte
critiques correspondantes et évaluer ces mêmes valeurs pour un tube encastré à ses
extrémités.

Données numériques

Problème 12.1

 =  2,5 m
d1 =  5 cm

d2 =  4 cm
E =  210 GPa

α =  12·10–6 / ˚C
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Calculer l’écart de température ∆t qui provoque le flambage d’un tube de longueur 
en acier S 235, articulé à ses extrémités A et B. Déterminer les charge et contrainte
critiques correspondantes et évaluer ces mêmes valeurs pour un tube encastré à ses
extrémités.

Données numériques

Problème 12.1

 =  2,5 m
d1 =  5 cm

d2 =  4 cm
E =  2,1·1011 Pa

α =  12·10–6 / ˚C
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Problème 12.1
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Problème 12.1
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Problème 12.1
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Problème 12.1
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Pour un petit déplacement horizontal δ du point B , le ressort fournit une force de
rappel R = k δ et la barre tourne d’un petit angle ϕ.

Équilibre du moment de force au point C

• 𝑀𝑀𝐶𝐶 = ℎ 𝑅𝑅 − 𝛿𝛿 𝑁𝑁 = 𝛿𝛿 𝑘𝑘 ℎ − 𝑁𝑁

Stabilité  et instabilité  élastiques
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La stabilité du système est caractérisée par l’équilibre des moments de forces R et N
au point C

• 𝑀𝑀𝐶𝐶 = ℎ 𝑅𝑅 − 𝛿𝛿 𝑁𝑁 = 𝛿𝛿 𝑘𝑘 ℎ − 𝑁𝑁

Trois possibilités se présentent alors :

• N < k h (MC > 0); le moment de rappel dû au ressort l’emporte sur le moment de
la force extérieure et le système revient à sa position initiale;

• N > k h (MC < 0); le moment de la force extérieure l’emporte sur le moment de
rappel et le système s’effondre;

• N = k h (MC = 0); les deux moments s’équilibrent et le système est instable, mais
pratiquement il s’effondre quand même car la plus petite imperfection
géométrique suffit pour le faire quitter sa position initiale (la force N = k h est la
charge critique du système).

Stabilité  et  instabilité  élastiques
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Un système est stable si sa déformation a pour
conséquence de diminuer le moment de flexion
interne (exemple de la poutre encastrée)

Un système devient instable lorsque les forces
extérieures induisent des déformations qui entraînent
une augmentation des efforts intérieurs et
généralement la ruine du système

Si l’on reprend l’exemple du début du chapitre on
peut définir son énergie de déformation et le travail de
la force extérieure comme suit :

• 𝑈𝑈 = 1
2
𝑅𝑅𝛿𝛿 = 1

2
𝑘𝑘𝛿𝛿2 = 1

2
𝑘𝑘 ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑 2 = 1

2
𝑘𝑘ℎ2𝜑𝜑2

• 𝑉𝑉 = 𝑡𝑡 𝑁𝑁 = ℎ 1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑 𝑁𝑁 = 1
2
ℎ𝜑𝜑2𝑁𝑁

Travail et énergie de déformation
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La stabilité du système dépend alors si

• 𝑈𝑈 > 𝑉𝑉 le système est stable

• 𝑈𝑈 < 𝑉𝑉 le système s’effondre

• 𝑈𝑈 = 𝑉𝑉 le système est instable

Cette troisième condition permet de retrouver la
charge critique déjà énoncée

• 1
2
ℎ𝜑𝜑2𝑁𝑁𝑐𝑐 = 1

2
𝑘𝑘ℎ2𝜑𝜑2

• 𝑁𝑁𝑐𝑐 = 𝑘𝑘𝑘

L’expression découlant de l’équilibre du travail de
force externe et de l’énergie de déformation et donc
équivalente à l’expression obtenue en cherchant
l’expression du moment de flexion dans la poutre

Travail et énergie de déformation



Chapitre 12 : Flambage des poutres droites

35

Le système est alors instable si le travail V = t N de la force extérieure est égal à
l’énergie de déformation U, la charge critique correspondante ayant pour valeur

• 𝑁𝑁𝑐𝑐 = 𝑈𝑈
𝑡𝑡

La méthode présente l’avantage principal d’éviter l’intégration de l’équation différen-
tielle du système

Par contre, la déformée choisie étant arbitraire, la charge critique trouvée n’est
qu’approximative.

Elle est toujours supérieure à la valeur exacte car la déformée réelle prend
spontanément la forme qui rend minimum la charge critique du système

Méthode de Timoshenko
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Reprenons le cas fondamental d’une poutre encastrée soumise à une charge de
compression N

Méthode de Timoshenko



Chapitre 12 : Flambage des poutres droites

37

Deux points A et B de la poutre, distants de ds, se déplacent en A' et B' après dé-
formation. Si l’on néglige le raccourcissement dû à la compression, l’arc A'B' garde
la longueur ds et la contribution de cet élément au déplacement vertical de la charge
a pour valeur

• 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑2 + 𝑑𝑑𝑦𝑦2
1
2 − 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 1 + 𝑦𝑦′2

1
2 − 1

La dérivée y’ de la déformée y(x) est très petite en comparaison de l’unité car le
déplacement horizontal δ est beaucoup plus faible que la longueur  quand la
charge devient critique

En ne conservant que les deux premiers termes du développement de la racine, on
peut récrire l’équation sous la forme suivante

• 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 1 + 𝑦𝑦′2
1
2 − 1 ≅ 1 + 1

2
𝑦𝑦′2 − 1 = 1

2
𝑦𝑦′2𝑑𝑑𝑑𝑑

Méthode de Timoshenko

1 + 𝛼𝛼 1/2 ≅ 1 +
1
2
𝛼𝛼 + ⋯
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L’intégration de l’équation

• 𝑡𝑡 = 1
2 ∫0
𝑦𝑦′2 𝑑𝑑𝑥𝑥

Si l’on néglige l’influence de la compression et de l’effort tranchant, l’énergie de dé-
formation de la poutre est donnée par l’expression simplifiée

• 𝑈𝑈 = 1
2 ∫0
𝑀𝑀2

𝐸𝐸𝐸𝐸
𝑑𝑑𝑥𝑥

En remplaçant le moment de flexion M par sa valeur tirée de la liaison entre la déri-
vée seconde de la déformée y et le moment fléchissant M, on trouve

• 𝑈𝑈 = 1
2 ∫0
𝑀𝑀2

𝐸𝐸𝐸𝐸
𝑑𝑑𝑥𝑥 = 𝐸𝐸𝐸𝐸

2 ∫0
𝑦𝑦′′2 𝑑𝑑𝑥𝑥

On obtient finalement la formule de Timoshenko

• 𝑁𝑁𝑐𝑐 = 𝑈𝑈
𝑡𝑡

= 𝐸𝐸𝐸𝐸 ∫0
 𝑦𝑦′′2 𝑑𝑑𝑥𝑥

∫0
 𝑦𝑦′2 𝑑𝑑𝑥𝑥

Méthode de Timoshenko

𝑀𝑀 = −𝑦𝑦′′𝐸𝐸𝐸𝐸
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Choisissons d’abord comme déformée y(x) la courbe exacte (sans excentrement e)
trouvée par intégration de l’équation différentielle

• 𝑦𝑦′′ = − 𝑁𝑁
𝐸𝐸𝐸𝐸

𝛿𝛿 − 𝑦𝑦 = −𝑘𝑘2𝑦𝑦 avec 𝑘𝑘 = 𝜋𝜋
2

On cherche la solution

• 𝑦𝑦 = 𝐶𝐶1 sin𝑘𝑘𝑘𝑘 + 𝐶𝐶2 cos 𝑘𝑘𝑘𝑘 + 𝐶𝐶3
• 𝑦𝑦′ = 𝑘𝑘 𝐶𝐶1 sin𝑘𝑘𝑘𝑘 − 𝑘𝑘𝐶𝐶2 cos𝑘𝑘𝑘𝑘

• �
𝑦𝑦′ 𝑥𝑥 = 0 = 0 = 𝑘𝑘 𝐶𝐶1
𝑦𝑦 𝑥𝑥 = 0 = 0 = 𝐶𝐶2 + 𝐶𝐶3
𝑦𝑦 𝑥𝑥 =  = 𝛿𝛿 = 𝐶𝐶1 + 𝐶𝐶3

 �
𝐶𝐶1 = 0
𝐶𝐶2= −𝛿𝛿
𝐶𝐶3 = 𝛿𝛿

D’où finalement on trouve

• 𝑦𝑦 = 𝛿𝛿 1 − cos 𝜋𝜋
2
𝑥𝑥

Application de la méthode de Timoshenko au cas fondamental
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Les deux dérivées successives s’écrivent

• 𝑦𝑦′ =
𝑑𝑑 𝛿𝛿 1−cos 𝜋𝜋

2
𝑥𝑥

𝑑𝑑𝑑𝑑
= 𝜋𝜋𝜋𝜋

2
sin 𝜋𝜋𝑥𝑥

2

• 𝑦𝑦′′ = 𝜋𝜋2𝛿𝛿
42

cos 𝜋𝜋𝜋𝜋
2

Le déplacement t est donné par la formule

• 𝑡𝑡 = 1
2 ∫0
𝑦𝑦′2 𝑑𝑑𝑥𝑥 = 𝜋𝜋2𝛿𝛿2

82 ∫0
 sin2 𝜋𝜋𝜋𝜋

2
𝑑𝑑𝑑𝑑 = 𝜋𝜋2𝛿𝛿2

16

Et donc l’énergie fournie au système est égale à

• 𝑈𝑈 = 𝐸𝐸𝐸𝐸𝜋𝜋4𝛿𝛿2

324 ∫0
 cos2 𝜋𝜋𝜋𝜋

2
𝑑𝑑𝑑𝑑 = 𝐸𝐸𝐸𝐸𝜋𝜋4𝛿𝛿2

643

On trouve la charge critique en divisant l’énergie par le déplacement t

• 𝑁𝑁𝑐𝑐 = 𝑈𝑈
𝑡𝑡

= 𝜋𝜋2𝐸𝐸𝐸𝐸
42

Application de la méthode de Timoshenko au cas fondamental
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Supposons maintenant que la déformé y(x) soit inconnue et prenons comme
déformée celle que produit une force horizontale Q appliquée à l’extrémité supérieure
de la poutre. Annexe IV

• 𝑦𝑦 = 𝑄𝑄
6𝐸𝐸𝐸𝐸

3𝑥𝑥2 − 𝑥𝑥3

• 𝑦𝑦′ = 𝑄𝑄
2𝐸𝐸𝐸𝐸

2𝑥𝑥 − 𝑥𝑥2

• 𝑦𝑦′′ = 𝑄𝑄
𝐸𝐸𝐸𝐸
 − 𝑥𝑥

En procèdent comme précédemment on trouve

• 𝑡𝑡 = 1
2 ∫0
𝑦𝑦′2 𝑑𝑑𝑥𝑥 = 𝑄𝑄2

8𝐸𝐸2𝐼𝐼2 ∫0
 2𝑥𝑥 − 𝑥𝑥2 2𝑑𝑑𝑑𝑑 = 𝑄𝑄25

15𝐸𝐸2𝐼𝐼2

• 𝑈𝑈 = 𝑄𝑄2

2𝐸𝐸𝐸𝐸 ∫0


− 𝑥𝑥 2𝑑𝑑𝑑𝑑 = 𝑄𝑄23

6𝐸𝐸𝐸𝐸

La charge critique approchée est donnée par

• 𝑁𝑁𝐶𝐶′ = 𝑈𝑈
𝑡𝑡

= 5𝐸𝐸𝐸𝐸
22

est erreur relative 𝜀𝜀 = 𝑁𝑁𝐶𝐶
′−𝑁𝑁𝐶𝐶
𝑁𝑁𝐶𝐶

= ⁄5 2− ⁄𝜋𝜋2 4
⁄𝜋𝜋2 4

= +1.3%

Application de la méthode de Timoshenko au cas fondamental
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Le système représenté est constitué d’une poutre articulée à ses extrémités et de
deux ressorts de constante k. Calculer la charge critique du système en prenant
comme déformée celle qui se produit quand les ressorts n’existent pas, c’est à dire
une sinusoïde à une demi onde (courbe 1). Trouver ensuite la valeur de la constante
k pour laquelle la poutre flambe selon une sinusoïde à trois demi ondes (courbe 2).

Problème 12.3



Dr. Alain Prenleloup
SGM BA3 2024-2025

Mécanique des structures

Chapitre 12 : Flambage des poutres droites



Chapitre 12 : Flambage des poutres droites

45

Le système représenté est constitué d’une poutre articulée à ses extrémités et de
deux ressorts de constante k. Calculer la charge critique du système en prenant
comme déformée celle qui se produit quand les ressorts n’existent pas, c’est à dire
une sinusoïde à une demi onde (courbe 1). Trouver ensuite la valeur de la constante
k pour laquelle la poutre flambe selon une sinusoïde à trois demi ondes (courbe 2).

Problème 12.3



Chapitre 12 : Flambage des poutres droites

46

Problème 12.3



Chapitre 12 : Flambage des poutres droites

47

Problème 12.3



Chapitre 12 : Flambage des poutres droites

48

Problème 12.3



Chapitre 12 : Flambage des poutres droites

49

Problème 12.3



Chapitre 12 : Flambage des poutres droites

50

Déterminer la charge critique de flambage pour la canette en alliage d’aluminium
schématisée ci-dessous (négligeons le rétrécissement et supposons les extrémités
comme indéformables). Déterminer la charge limite en compression. Comparer ces
valeurs et discuter de l’expérience d’écrasement d’une canette sous le poids d’une
personne physique.

Exemple

D
H

Applications :

Module de l’alliage Al E = 73 GPa
Limite de proportionnalité σp = 320 MPa
Hauteur : H = 11.5 cm
Diamètre : D = 7 cm
Épaisseur parois : e = 0.075 mm
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Exemple
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